توابع متعامد بلاک-پالس و استفاده از آن برای حل معادلات دیفرانسیل نسبی کسری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم ریاضی
- نویسنده نسرین یوسفی
- استاد راهنما فرشید میرزایی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1393
چکیده
در این پایان نامه ابتدا توابع بلاک-پالس دو بعدی و ماتریس عملیاتی بلاک-پالس برای انتگرال گیری کسری را معرفی می کنیم .همچنین ماتریس عملیاتی بلاک-پالس برای مشتق گیری کسری را بدست می آوریم.معادله اولیه را به معادله سیلوستر تبدیل می کنیم. در انتها کاربرد ها را از طریق تعدادی مثال عددی بیان نموده ایم.
منابع مشابه
توابع متعامد بلاک-پالس و استفاده از آن برای حل معادلات انتگرال
در این پایان نامه حل عددی معادلات انتگرال فردهلم و ولترا خطی و غیر خطی، همچنین معادلات انتگرال-دیفرانسیل فردهلم و ولترا خطی با استفاده از روش توابع متعامد بلاک-پالس مورد بررسی قرار گرفته است. این پایان نامه شامل پنج فصل است که به صورت زیر ارائه گردیده اند. در فصل اول مقدمه ای کوتاه در مورد معادلات انتگرال و تعاریف و قضایای مربوط به این پایان نامه بیان شده است. در فصل دوم مختصر توضیحاتی از تواب...
15 صفحه اولروش مستقیم حل عددی معادلهٔ انتگرو- دیفرانسیل ولترا با استفاده از توابع بلاک- پالس
در این مقاله روشی مستقیم برای حل عددی معادلات خطی انتگرو- دیفرانسیل ولترا ارائه می شود. این روش براساس توابع بلاک-پالس و ماتریس عملیاتی آن ها است و معادله ای انتگرو-دیفرانسیل را به یک دستگاه معادلات جبری پایین مثلثی تبدیل می کند که به سادگی می توان آن را حل کرد. برای نشان دادن دقت و کارایی این روش چند مثال عددی ارائه شده است.
متن کاملحل عددی معادلات دیفرانسیل کسری با استفاده از ترکیب توابع بلاک پالس و چند جمله ای های لژاندر
این پایان نامه از چهار قسمت تشکیل شده است. در قسمت اول به معرفی حسابان کسری می پردازیم. در قسمت دوم توابع متعامد و انواع آن را معرفی کرده و تعاریف توابع بلاک پالس، چند جمله ای های لژاندر و ترکیب توابع بلاک پالس و چند جمله ای های لژاندر را بیان کرده و بعضی از خواص آن ها و همچین نحوه ی تقریب زدن توابع با استفاده از آن ها را بررسی می کنیم. در ادامه انواع ماتریس های عملیاتی مرتبه ی صحیح را تعریف کر...
15 صفحه اولاستفاده از توابع متعامد کسری برای حل مسائل مقدار مرزی معادلات دیفرانسیل معمولی
در زمینه های علوم و مهندسی مسائلی وجود دارند که روی بازه های بی کران مطرح می شوند. روش های متفاوتی برای حل این گونه مسائل پیشنهاد شده اند که روش رایج در این زمینه، استفاده از توابع متعامد لاگر و هرمیت می باشد. یکی از روش های کارا برای حل این گونه مسائل، استفاده از روش های طیفی و به خصوص روش شبه طیفی با استفاده از توابع پایه ای متعامد کسری می باشد. در این پایان نامه برآنیم که چگونگی حل معادلات د...
15 صفحه اولبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023